Optimal Spatial Sampling of Plant Transfer Functions for Head-Tracked Personal Sound Zones

*E-mail: <u>yqiao@princeton.edu</u>

- Yue Qiao* (presenter) & Edgar Choueiri 3D Audio and Applied Acoustics (3D3A) Lab Princeton University
 - Presented at the 154th AES Convention May 15, 2023

[1] Druyvesteyn and Garas, JAES, 1997

Audio Programs

[2] Poletti, AES Conv. 125, 2008

The Importance of Head Tracking in PSZ

Especially true for **ear-targeting** *PSZ systems*

[3] Vindrola et al., JAES, 2020

[4] Qiao and Choueiri, AES Conv. 152, 2022

Solutions for Head-Tracked Reproduction

Approaches

- Dynamic loudspeaker beamforming^[5]
- Recursive Least Square)

Modeling accuracy Isolation performance Implementation cost

[7] Lindfors et al., JAES, 2022

Challenges with implementing head-tracked PSZ systems...

The implementation of head-tracked PSZ seems practically impossible!

What is the minimum required spatial sampling resolution?

What are the rules for optimizing the spatial sampling process?

 4xN	~ 25.6 dB for non-distraction
2x2	~20.7 dB for envelopment
Number of plant ATF channels	Performance Requirement ^[8]

Experimental system setup

Loudspeaker array (200~7000Hz)

B&K HATS dummy head

Mechanical translation stage

Binaural Microphones

Plant sampling resolution: $\Delta x = \Delta y = 1cm$

Evaluation Procedure

Step I. **Plant spatial sampling**

Step II. **PSZ filter generation**

Step III. **Performance evaluation**

Evaluation Metrics

Two aspects of isolation^[9]

Between BZ and DZ: $IZI_2 = \frac{\|\mathbf{H}_2 \mathbf{g}_2^*\|^2}{\|\mathbf{H}_1 \mathbf{g}_2^*\|^2}$ **Inter-Zone Isolation (IZI)**

Between target and interfering programs: **Inter-Program Isolation (IPI)** $IPI_2 = \frac{\|\mathbf{H}_2 \mathbf{g}_2^*\|^2}{\|\mathbf{H}_2 \mathbf{g}_1^*\|^2}$

Only consider right listener being in *BZ* For the left moving listener: IZI ~ moving DZ, IPI ~ moving BZ

Takeaways

- limitations, etc.

• In the best case scenario, high isolation can be preserved over a large area • Isolation is inherently lower at low frequencies due to room modes, setup

Results — Shifting Positions • X movements, shifting in Y Λ Filter robustness

PRINCETON BDA

PRINCETON UNIVERSITY BD3A

What are the rules for optimizing the spatial sampling process?

- 2 Distances •
- the distance between two listeners \downarrow , sampling resolution [†] the distance between the listener and the array , sampling resolution Temporal frequency: frequency , sampling resolution
- *BZ/DZ*: for **moving DZ**, sampling resolution[†]; for **moving BZ**, resolution

Discussion and Future Work

- The qualitative rules are generalizable to other PSZ systems of similar dimensions
- The findings suggest a sampling of BZ and DZ at different resolutions
- The findings are also insightful for implementing interpolation/adaptive filtering •
- The observed crossover frequency (1500 Hz) can be used for splitting approaches •
- Future work: investigating spatial sampling of head rotations

Optimal Spatial Sampling of Plant Transfer Functions for Head-Tracked Personal Sound Zones

*E-mail: <u>yqiao@princeton.edu</u>

- Yue Qiao* (presenter) & Edgar Choueiri 3D Audio and Applied Acoustics (3D3A) Lab Princeton University
 - Presented at the 154th AES Convention May 15, 2023

