Optimal Spatial Sampling of Plant Transfer Functions for Head-Tracking Personal Sound Zones

Yue Qiao* (presenter) & Edgar Choueiri
3D Audio and Applied Acoustics (3D3A) Lab
Princeton University

Presented at the 154th AES Convention
May 15, 2023

*E-mail: yqiao@princeton.edu
Personal Sound Zones[1]

Audio Programs \quad Loudspeakers \quad Listeners

DZ

BZ

[1] Druyvesteyn and Garas, JAES, 1997
The Pressure Matching (PM)[2] Method

\[g^* = \arg \min_g \| p_T - H \cdot g \|^2 \]

PSZ Setup

- PSZ Filters
- Target Pressure
- Plant Acoustic Transfer Functions (ATFs)

PSZ Playback

- Actual Pressure
- Actual ATFs

Mismatch

Difference

The Importance of Head Tracking in PSZ

Head movements \rightarrow Mismatched plant ATFs \rightarrow Degraded PSZ isolation

Especially true for **ear-targeting PSZ systems**

[3] Vindrola et al., JAES, 2020

[4] Qiao and Choueiri, AES Conv. 152, 2022
Solutions for Head-Tracker Reproduction

Approaches
- Dynamic loudspeaker beamforming\(^5\)
- Adaptive filtering (Filtered-x Least-Mean-Square\(^6\), Recursive Least Square)
- Filter cross-fading with plant spatial sampling\(^7\)

\(^5\) Qiao and Choueiri, AES Conv. 151, 2021

\(^6\) Vindrola et al., JASA, 2021

\(^7\) Lindfors et al., JAES, 2022
Challenges with implementing head-tracked PSZ systems...

<table>
<thead>
<tr>
<th></th>
<th>Single-listener Crosstalk Cancellation systems</th>
<th>Two-listener PSZ systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees-of-freedom in head movements</td>
<td>6</td>
<td>6^2</td>
</tr>
<tr>
<td>Number of plant ATF channels</td>
<td>2×2</td>
<td>$4 \times N$</td>
</tr>
<tr>
<td>Performance Requirement8</td>
<td>~ 20.7 dB for envelopment</td>
<td>~ 25.6 dB for non-distraction</td>
</tr>
</tbody>
</table>

The implementation of head-tracked PSZ seems practically impossible!

What is the minimum required spatial sampling resolution?
What are the rules for optimizing the spatial sampling process?

8 Canter and Coleman, AES Conv. 150, 2021
Experimental system setup

- Loudspeaker array (200~7000Hz)
- B&K HATS dummy head
- Mechanical translation stage
- Binaural Microphones
Plant sampling resolution: $\Delta x = \Delta y = 1 cm$
Evaluation Procedure

Step I.
Plant spatial sampling

Step II.
PSZ filter generation

Step III.
Performance evaluation

System response

Performance Metrics

PM for better phase control & audio quality

\[g^* = (\hat{H}^H\hat{H} + \sum_{m=1}^{M} \Sigma_m)^{-1}\hat{H}^Hp_T \]
Evaluation Metrics

Two aspects of isolation\cite{9}

Between BZ and DZ:

Inter-Zone Isolation (IZI)

\[IZI_2 = \frac{||H_2g_2^*||^2}{||H_1g_1^*||^2} \]

Between target and interfering programs:

Inter-Program Isolation (IPI)

\[IPI_2 = \frac{||H_2g_2^*||^2}{||H_1g_1^*||^2} \]

Only consider right listener being in BZ

For the left moving listener: IZI ~ moving DZ, IPI ~ moving BZ

\[9\] Qiao et al., JASA Express Lett., 2022
Results — Full Resolution

• X movements

Scattering from the right listener
• Y movements
Takeaways

• In the best case scenario, high isolation can be preserved over a large area

• Isolation is inherently lower at low frequencies due to room modes, setup limitations, etc.
Results — Spatial Downsampling

• X movements

IPI (moving BZ) is more robust than IZI (moving DZ)

3cm for both IZI and IPI
• Y movements

3cm for IZI and 5cm for IPI
Results — Shifting Positions

- X movements, shifting in Y

Filter robustness
Near — Front — Mid — Back — Far from the array
• Y movements, shifting in X

Far from A

Filter robustness

Near Listener B

Left

Mid

Right
What are the rules for optimizing the spatial sampling process?

- 2 Distances
 - the distance between two listeners \downarrow, sampling resolution \uparrow
 - the distance between the listener and the array \downarrow, sampling resolution \uparrow
- Temporal frequency: frequency \uparrow, sampling resolution \uparrow
- BZ/DZ: for moving DZ, sampling resolution \uparrow; for moving BZ, resolution \downarrow
The qualitative rules are generalizable to other PSZ systems of similar dimensions

The findings suggest a sampling of BZ and DZ at different resolutions

The findings are also insightful for implementing interpolation/adaptive filtering

The observed crossover frequency (1500 Hz) can be used for splitting approaches

Future work: investigating spatial sampling of head rotations
Optimal Spatial Sampling of Plant Transfer Functions for Head-Trackerd Personal Sound Zones

Yue Qiao* (presenter) & Edgar Choueiri
3D Audio and Applied Acoustics (3D3A) Lab
Princeton University

Presented at the 154th AES Convention
May 15, 2023

*E-mail: yqiao@princeton.edu