

The Performance of A Personal Sound Zone System with Generic and Individualized Binaural Room Transfer Functions

Yue Qiao, Edgar Choueiri

The Performance of A Personal Sound Zone System with Generic and Individualized Binaural Room Transfer Functions

Yue Qiao* (presenter) & Edgar Choueiri 3D Audio and Applied Acoustics (3D3A) Lab Princeton University

Presented at the 152nd AES Convention May 17, 2022

*E-mail: yqiao@princeton.edu

[1] Druyvesteyn and Garas, JAES, 1997

Audio Programs

[2] Poletti, AES Conv. 125, 2008

Head-Related Transfer Functions (HRTFs)

> **Binaural Room Transfer Functions** (BRTFs)

Please refer to the paper for a full list of references.

Sources of TF Mismatches

Sound speed, Ambient temperature, background noise...

BRTF Mismatch in PSZ

Head-Related Transfer Functions (HRTFs)

> **Binaural Room Transfer Functions** (BRTFs)

Setup Phase

Phase

Why not use actual listeners' BRTFs in both phases?

Cho and Chang, ICA, 2019

Vindrola et al., JAES, 2020

Ebri et al., AES Conv., 2020 Molés-Cases et al., JASA, 2022

Individualizing BRTFs

Benefits

- For binaural reproduction
 - Improves localization accuracy with headphone-based systems^[3]
 - Improves performance for crosstalk cancellation systems^[4]
- For PSZ systems?

[3] Wenzel et al., JASA, 1993 [4] Akeroyd et al., JASA, 2007

Potential Barriers

- Time, cost, and equipment
- Additional measurements & signal processing
- Availability

. . .

Does individualization for PSZ make a difference?

If so, is the improvement worth the efforts?

Regularized PM Solution

$$\tilde{\mathbf{g}}^* = (\mathbf{H}^H \mathbf{H} + \beta \mathbf{I})^{-1} \mathbf{H}^H \mathbf{p}_T \quad \mathbf{F}$$
Regularization

Optimize regularization s.t. PSZ filters are robust to

small head misalignments of a single listener

BRTF mismatch between listeners

larger head movements, torso movements, etc. N/A

Robust, but not too robust

X

A Probabilistic approach^[5]

 $H_{ml} = A_{ml} e^{i\phi_{ml}}$ H as random variables

Modified Cost Function

Optimal Solution

Only account for head misalignments

PRINCETON NIVERSITY

Robust, but not too robust

$$\begin{split} A_{ml} &\sim N(\hat{A}_{ml}, \sigma_{A,ml}^2) \\ \phi_{ml} &\sim N(\hat{\phi}_{ml}, \sigma_{\phi,ml}^2) \end{split}$$

$J_{prob} = \mathbb{E}\{\|\mathbf{Hg} - \mathbf{p}_T\|^2\}$

$$= (\hat{\mathbf{H}}^{H}\hat{\mathbf{H}} + \Sigma_{m=1}^{M}\Sigma_{m})^{-1}\hat{\mathbf{H}}^{H}\mathbf{p}_{T}$$

Variance matrix Σ_m : empirically derived

PSZ system for evaluation

Loudspeaker Array (200~7000Hz)

> **B&K HATS** dummy head

Head Tracker (Infrared depth sensor)

Binaural Microphones

Head Position Display

Allowable head movement range: 1 cm/10 deg

2 Listener Setups

Generic Setup

Individualized Setup

2 Sound Zone Configurations (SZCs)

SZC 1

SZC 2

2 Types of Measurements

- BRTF Measurements
 - Prior to filter evaluation
- Used for deriving TF variance & generating PSZ filters System TF Measurements (BRTFs*PSZ Filters)
 - After filter generated & loaded
 - In situ: minimal head movements
 - Ex situ: additional head misalignments
- Exponential sine sweeps used for TF measurements

Performance Evaluation Metrics

- Acoustic Contrast (AC)^[6]
 - Quantifies the isolation level between two PSZs $AC = \frac{\mathbf{g}^{H}\mathbf{H}_{B}^{H}\mathbf{H}_{B}\mathbf{g}}{\mathbf{g}^{H}\mathbf{H}_{D}^{H}\mathbf{H}_{D}\mathbf{g}}$
- Robustness against head misalignments
 - Variation in AC level from multiple *ex situ* measurements
- Other metrics (e.g., Array Effort, Reproduction Error) not adopted

- Difference between the HATS

PSZ Performance in Best-Case Scenario

AC Spectrum from the *in situ* case

- AC increases with individualized filters
- More noticeable above 2kHz

PSZ Performance in Best-Case Scenario

AC Spectrum from the *in situ* case

- *DZ* for HATS degraded by replacing the other listener
- Change in one => degradation in both!

Robustness Against Head Misalignments AC from 20 ex situ takes Robustness ~ width of the curve

- Robustness decrease for individualized filters above 3kHz
- Individualized is still better
- AC decrease for individualized filters compared to the *in situ* case

Robustness Against Head Misalignments AC from 20 *ex situ* takes Robustness ~ width of the curve

- Similar robustness for both filters
- Same AC decrease for individualized filters as in SZC 1

Conclusions

- Does individualization for PSZ make a difference?
 - Yes, it does!
 - AC improvement at all frequencies, both *in situ* and *ex situ* -
 - Slight decrease in robustness at high frequencies
- What else?
 - Replacing one listener can affect performance for both listeners
 - Best performance may be hard to retain... (without dynamic reproduction)
- Is the improvement worth the efforts?
 - Not known yet...
 - subjective evaluation required (to be presented in a future work)

The Performance of A Personal Sound Zone System with Generic and Individualized Binaural Room Transfer Functions

Yue Qiao* (presenter) & Edgar Choueiri 3D Audio and Applied Acoustics (3D3A) Lab Princeton University

Presented at the 152nd AES Convention May 17, 2022

*E-mail: yqiao@princeton.edu

